Received: July 4, 1981

IODINE FLUOROSULFATE REACTIONS WITH FLUOROCARBONS

CARL J. SHACK and KARL 0. CHRISTE Rocketdyne, a Division of Rockwell International Canoga Park, Calif. 91304 (U.S.A.)

SUMMARY

Iodine monofluorosulfate has been found to react with f1uoroolefins in the absence of a solvent to give the corresponding iodo alkyl fluorosulfates by addition of -1 and -OSO₂F across the double bond. The observed products were ICF₂CF₂SO₃F, CF₃CFICF₂SO₃F, and the isomer mixture ICF₂CFC1SO₃F and ICFCICF₂SO₃F. Perfluorocyclobutene was unreactive. The iodine fluoro**sulfate used for this study was synthesized from the reactions of either** I₂ or R_fI with CISO₃F, with both reactions being new routes to this **compound. These iodo fluorocarbon fluorosulfates are novel compounds and were characterized by spectroscopy and by formation of the derivatives** CF₃CFICF0 and ICF₂CF0.

INTRODUCTION

The halogen fluorosulfates are very reactive materials in general, being capable of oxidation or substitution processes In either organic or inorganic systems [l]. One of the earliest reactions described was the addition of XS03F *to* **carbon-carbon double bonds [2] where X=F, Cl, or Dr. However , despite the fact that iodine monofluorosulfate became** known at about the same time [3], no reports on similar reactions of $1050₂F$ have appeared. Indeed, the chemistry of 10SO₂F (commonly written, 1SO₃F) and **l**(SO₃F)₃ is practically non-existent [1,4] and no organic derivatives have **been reported.**

In a previous study 151 **of fluorocarbon halide-chlorine fluorosulfate displacement reactions the following products were noted.**

$$
R_f I + 2C150_3 F + C1_2 + [R_f (50_3 F)_2] + R_f 50_3 F + 150_3 F
$$

Based on the observed material balance, the by-product iodine fluorosulfate was formed in nearly quantitative yield, but was identified only by its physical appearance, i.e. a black solid at ambient temperature [3]. **Thus** having samples of 150₃F readily available, it was interesting to determine **whether this compound would be useful for the preparation of simple organic derivatives. We now report the results of experiments utilizing olefins.**

EXPERIMENTAL

Volatile materials were manipulated in a well-passivated (with CIF₃) stainless steel vacuum line equipped with Teflon FEP U traps, 316 stainless steel bellows seal valves and a Heise Bourdon tube-type pressure gauge. **Transfers outside the vacuum line were carried out in a drybox. Infrared spectra were obtained using** 5 **cm path stainless steel cells with AgCl windows and a PE Model 283 spectrophotometer. Mass spectra were measured with an EAI Quad 300 quadrupole spectrometer and** 19 **F nmr spectra were determined with a Varian EM390 spectrometer operating at** 84.6 **MHz, using** CFC1₃ as an internal standard. Chlorine fluorosulfate was prepared from CIF and SO₃ [6]. The fluorocarbon starting materials were purchased from **PCR Research Chemicals, Inc., and used as received.**

ESO₃F Preparations

A 30 ml stainless steel cylinder was loaded with I2 (4.02 mmol) and ClSO F (8.09 rrmol) **and maintained at** -78' **overnight followed by a day at -450: While warming to ambient temperature the volatile products were** pumped from the cylinder and trapped at -196⁰. These consisted of Cl₂ and a trace of ClSO₃F (4.02 mmol total) indicating an essentially quantitative reaction of the CISO₃F. The weight increase of the cylinder corresponded to that expected for the formation of $150₃F$. When this reaction was carried **out in a Teflon ampoule, it was noted that the solid product was orange** at low temperatures and only changed to the black color typical of $150₃F$ on **standing at 0' or higher for some time.**

An alternative preparation of ISO₃F used in this study was the reaction of R_f I with ClSO₃F. Thus, n-C₃F₇1 (2.90 mmol) and ClSO₃F (6.16 mmol) were **combined in a stainless steel cylinder and maintained at -45' for several days. While warming to ambient temperature the volatile products were separated by fractional condensation in traps cooled to -45, -78 and -196O.** The latter contained CI_2 (2.91 mmol) and a little $C_3F_7SO_3F$ and C_3F_7I . The warmer traps contained only C₃F₇SO₃F (2.77 mmol) in 95% yield. Iodine **fluorosulfate remained in the cylinder, however, the observed weight (0.6829) was somewhat higher than the theoretical weight (0.6569) possibly due to the formation of some l(S0 F) as an impurity. 3 3**

$\underline{\text{CF}_3\text{CFICF}_2\text{SO}_3\text{F}}$

To the lS03F(_2.90 mmol) formed from C3F71 and ClS03F was added CF3CF=CF2 (2.40 mmol) at -196'. The mixture was allowed to react by warming the cylinder to room temperature for several days. The only volatile product was CF₃CFICF₂SO₃F (2.35 mmol, 98% yield), a colorless liquid with a vapo
pressure of 13 mm at 25⁰. This liquid was identified by its; ¹⁹F NMR, **infrared, and mass spectra. IR, cm-' (intens.): (vs), 1262 (vs), 1232 (vs), 1190 (VW), 1115 (s), 979 (s), 962 (sh), 924 (w), 905 (m), 846 (s). 764 (m), 727 (w), 611 (VW), 574 (m), and 537 (VW). Intense ions found in** the mass spectra were m/ \bullet (assign.):376 (C₃F₆1SO₃F), 277 (C₃F₆1), 249 (C₃F₆SO₃F), 150 (C₃F₆), 149 (CF₃SO₃F), 131 (C₃F_c), 127 (I), 100 (C₃F_h), 83 (SO₂F), 69 (CF₃, base), 67 (SOF), 64 (SO₂), 50 (CF₂), 48 (SO), and 47 (CFO)

$ICF_2CF_2SO_3F$

A cylinder containing lS03F (6.56 mnol), prepared from I2 and ClS03F, was cooled to -196° and C_aF₁ (7.05 mmol) was added. The cylinder was place in a liquid nitrogen/CO₂ slush and allowed to warm slowly to ambient tempera**ture. After a few days the volatile products were pumped through traps** cooled at -30 , -78 , and -196° . The latter contained a mixture (0.25 mmol) of CICF₂CF₂SO₃F [2], Cl₂, and an unidentified acyl fluoride. The -30[°] fraction contained small amounts of F0₃SCF₂CF₂S0₃F [7] and ICF₂CF₂S0₃F while the -78⁰ fraction was good quality ICF₂CF₂SO₃F (3.98 mmol, 61% yield) colorless liquid with a vapor pressure of 24 mm at 22⁰. The remaining **unaccounted for reactants were found 'n the cylinder in the form of a white** solid polymer and dark oil, presumably $\frac{1}{2} (C_2F_4)_{n}S_3F$, $\frac{1}{2} (C_2F_4)_{n}$, or $F0_3S(C_2F_4)_{n}$ SO_3F type materials which were not examined further. The $ISO_3F - C_2F_4$

reaction was repeated using $ISO₃F (3.41 mmol)$ which was the 2 year old byproduct of a C_7F_{15} ! - C1S0₃F reaction [5]. Together with C_2F_4 (3.96 mmol) **and a more controlled warm-up, this reaction produced a yield of purified ICF2CF2S03F of 76% based on IS03F:vapor density obs'd. 330; calc'd. 326g/M,. Spectral characterization included infrared, cm -' (intens.)** ; **1497 (vs)** * **,301 (ms), 1262 (vs), 1226 (ms), 1167 (s), 1147 (s), I105 (s), 1080 (s), 952 (ms),** 931 **(ms), 845 (s), 792 (m), 600 (w), and 555 (w); mass spectra, m/e (assign.):** 326 (C₂F₄1SO₃F), 227 (C₂F₄1), 199 (C₂F₄SO₃F), 177 (CF₂1), 158 (CF1), 149 **(CF2S03F), 127 (I), 119 (C2F5), 100 (C2F4), 97 (C2F30), 83 (S02F, base) 81 (c F3), 69 (cF3), 67 (SOF), 64 (So2, 50 (CF2), 48 (SO) and 47 (CFO);** and ¹⁹F NMR spectra (Table 1).

$ICF₂CFCISO₃F - ICFCICE₂SO₃F$

A cylinder containing lS03F (4.02 mmol) prepared from I2 and ClS03F was cooled to 0' and CF2-CFCl(8.12 mmol) was gradually added with intermittent shaking and keeping the pressure below 300 mm. After the first half of the **olefin was added the uptake of CF2=CFC1 became slow. Consequently, the final 2 mmol was condensed at -196' into the cylinder and the mixture kept at ambient temperature overnight. Fractional condensation though traps** cooled at $0, -30, -78,$ and -196° served to separate unreacted CF_{2} =CFCl (1.22 mmol) retained at -196⁰, and I_2 (a few crystals) retained at 0⁰. **The other two traps contained a slightly purplish liquid which was recombined** and treated with Hg to remove I_2 and refractionated through 0, -30, and -78⁰. **The -78' material (0.5 mmol) was mainly ClCF2CFClS03F based on its infrared and lgF NHR spectra [El. The 0 and -30° fractions (6.40 rmnol total, 79.6% yield) were colorless liquids with quite similar infrared. mass, and NNR** ,
spectra. The latter showed clearly that three compounds were present in the mixture; ICF₂CFC1SO₃F, ICFCICF₂SO₃F, and FO₃SCFC1CF₂SO₃F. Based on the **measured peak areas, the ratio of the first.two isomeric materials was 1.5 and they comprised 95% of the sample. The infrared spectrum of the isomers** was recorded, cm⁻¹ (intens.): 1491 (vs), 1306 (vw), 1253 (vs), 1219 (m), **,167 (s), ,134 (s), ,080 (s), ,058 (s), 1010 (m), 987 (m), 945 (w), 927 (w), 860 (sh), 842 (vs), 780 (m), 700 (w), and 569 (m). Intense ion peaks noted** in the mass spectrum were m/e (assign.)($35c1$ only given): 342 ($c_2^r s_3^c11s_0 s_1^r$), 243 (c₂F₃C11), 215 (c₂F₃C1SO₃F), 193 (CFC11), 177 (CF₂1), 165 (CFC1SO₃F), 149 (CF₂SO₃F), 127 (1), 116 (C₂F₃C1), 113 (C₂F₃C10), 97 (C₂F₃0), 85 **(CF2Cl), 83 (S02F, base) 69 (CF3), 67 (SOF), 66 (CFCI), 64 (S02), 63 (CCIO). 50 (CF2), 48 (SO), and 47 (CFO). The " F NWR spectra are listed in Table I.**

CF;CFICFO

A 30 ml stainless steel cylinder containing CsF (1.24g) and CF₃CFICF₂SO₃F **(1.12 rmnol) was placed in an oven at 100' for 1 hour. The products volatile** at 25⁰ were removed from the cylinder by pumping and were found to be S0₂F₂ (1.2 mmol) with traces of R_f - material. Pyrolysis of the solid left in **the cylinder (heat gun, 15 min.) while pumping through a -196' trap yielded CF3CF'CF0 (1.03 nsnol, 92% yield). This compound was identified by its vapor density; obs'd. 27lg/mol, calc'd. 274g/mol and spectral parameters. Infrared bands were, cm -1 (intens.): 1862 (vs), 1278 (~1, 1256 (vs), 1211 (vs) ,'I17 (s), 974 (w), 954 (m), 886 (m), 755 (w), and 683 (m). The** intense mass fragments were, m/e (assign.): 274 (C₃F₅10), 227 (C₂F₄1), 177 (CF₃1), 147 (C₃F₅0), 128 (C₃F₅0), 127 (I), 119 (C₃F₅), 100 (C₃F₅), 97 **(C2F3D), 81 (C2F3), 69 (CF3, base), 50 (CF2), and 47 (CFO. The "F NMR spectrum is listed in Table 1.**

<u>**ICF₂CFO</u>**</u>

A mixture of ICF₂CF₂SO₃F (0.42 mmol) and CsF was heated at 100[°] for **2 hours. Retooling to room temperature and fractionation of the volatile products through traps cooled at -126 and -196' permited the separation of** SO₂F₂ and traces of R_fCFO from ICF₂CFO (0.38 mmol, 91.% yield) which was retained at -126° . The observed infrared bands were, cm⁻¹ (intens.): **1870 (vs), 1243 (vs), 1'75 (s) .I083 (vs), 901 (s), 842 (w), and 645 (m). The I9 F NMR spectrum is listed in Table 1.**

RESULTS AND DISCUSSION

Iodine monofluorsulfate was found to add across olefinic double bonds according to:

$$
CF_3CF = CF_2 + 150_3F
$$
\n
$$
CF_2 = CF_2 + 150_3F
$$
\n
$$
CF_2 = CF_2 + 150_3F
$$
\n
$$
CF_2 = CF_1 + 150_3F
$$
\n
$$
CF_2 = CFC1 + 150_3F
$$
\n
$$
CF_2 = CFC1 + 150_3F
$$
\n
$$
CFC_2 = CFC1 + 150_3F
$$

The tetrafluoroethylene reaction was sometimes quite vigorous, resulting in **oi ly or sol id polymer formation. The chlorotrifluoroethy'ene reaction, however, required little moderation and proceeded at a rather slow rate after about** half the available ISO₃F was consumed. The least reactive olefin was

perfluorocyclobutene which did not react with ISO₃F under comparable conditions although it does add ClSO₃F readily to give C-C₄F₆Cl(SO₃F).[6]. The reactions of $150₃F$ with the above olefins occur in yields of 76-98% **in agreement with the anticipated 1:lstoichiometry. All of the products are mobile, colorless liquids of low volatility.**

Measurement of the spectral properties of the products confirmed their identity. The formulation as $I-R_f-SO_3F$ adducts was confirmed by the mass **spectra which in all cases exhibited a readily detectable m/e peak attributable to the expected parent ion. This is in agreement with general observations for iodofluorocarbons. The other mass fragments support the formulated structures. Noteworthy is the fact that m/e 83, attributable to** the SO₂F⁺ ion, constitutes the base peak in those fluorosulfates lacking a

TABLE 1

Ppm upfield from internal CFC13. The observed area ratios, multiplicities and coupling constants verified the above assignment

The subscripts of the coupling constants refer to the sequence of the carbon or sulfur atoms in the molecular structures given in the first column of the table and increase from left to right.

a <code>CF₃ <code>-group. In the latter case, m/e 69 due to CF₃ is the peak. The</code></code> **3 - group. infrared spectra of these compounds shw the bands characteristic for a -1 monodentate S03F group** (-1500 **cm** , vs, **was SO2;** -850 **cm, -' S-O, S-F stretch). In addition to the expected strong C-F stretching modes there are** moderately strong bands in the 900-1000 \textsf{cm}^{-1} region due to both C-C and **C-O stretching vibrations.**

Definitive results regarding the structure of the compounds was furnished by their '9 **F NMR spectra which are summarized in Table I. These data, when compared to ii terature values 19) for similar compounds, are very character**istic. The -SO₂F fluorine shift is always near -49 ppm, while other carbon**fluorine groups exhibit well established and distinct chemical shifts. It** is noteworthy that the isomer ICFCICF $_2$ SO $_3$ F shows hindered rotation about
 2^5 **the C-C bond up to at least 80' as evidenced by the magnetic non-equivalence** $(\Delta v=9.3Hz)$ of the two fluorines of the CF₂ resonance. This is often found **for similar ethane derivatives [IO].**

Two of the new fluorocarbon fiuorosuifates were catalytical iy decomposed as shown in the equation.

$$
R_f^{CF_2SO_3F} \xrightarrow{\text{CsF}} SO_2F_2 + R_f^{CFO} (R_f \text{--}ICF_2, CF_3^{CFI})
$$

These high yield reactions are very useful in furnishing a derivative for identification of the parent compound [5,1i]. **The acyi fluorides obtained were characterized in the same manner as the fiuorosuifates.**

Overall these reactions of ISO₃F and olefins resemble those of CISO₃F [12]. Thus, CF₃CF=CF₂ gives only the one isomer expected for a directed polar addition, while CF₂=CFCl gives two, even though both systems might be **expected to proceed by the same reaction path [13]. Steric factors cannot be important in these cases since the double bonds are not sufficiently hindered to account for the difference. Thus, a single mechanism** to **explain this behavior is not'readiiy apparent. Nevertheless, it has been shown that potentially useful organic derivatives of IS0 F can be easily EXECUTE FOR SECUTE ASSESSED ASSESSED CONSUMER** CONSIDERS THE CONSUMINUES And **SECUTE ASSESSED ASSESSED ASSESSED** be mentioned that INO₃, generated in solution as a pyridinium salt, has **recently been successfully added to unsaturated hydrocarbon substrates 1141.**

ACKNOWLEDGEMENT

The authors gratefully acknowledge support for this work by the U. S. Air Force Office of Scientific Research under Contract F49620-77-C-0038.

- **F. Aubke and D. D. DesMarteau, in P.Tarrant (Editor), Fluorine Chemistry** \mathbf{I} **Reviews, s, (1977) 73.**
- **W. P Gilbreath and G. H. Cady, Inorg. Che., 2, (1963) 496.** $\mathbf{2}$
- **F. Aubke and G. H. Cady, Inorg. them., A, (1965) 269.** $\overline{\mathbf{3}}$
- 4 **W. W. Wilson and F. Aubke, Inorg. Chem., 13, ('974)** 326.
- 5 **C. J. Schack and K. 0. Christe, J. Fluorine them., in press.**
- **C. J. Schack and R. D. Wi Ison, Inorg. Chem., 2, (1970) 311.** 6
- **J. M. Shreeve and G. H. Cady, J. Am. Chem. Sot., 83,** (1961) **4521.** $\overline{7}$
- 8 **A. V. Fokin, Y: N. Studnev, A. I. Rapkin, L. D. Kuznetsova, 0. V. Verenikin, and I. N. Krotovich, 'zv. Akad. Nauk SSSR, Ser. Khim.,** (1976) 2259.
- 9 **C. H. Dungan and J. R. VanWazer, Compilation of Reported ¹⁹F NMR Chemical Shifts, Wiley-Interscience, New York, 1970.**
- **'0 R. E. Banks, A. Braitwaite, R. N. Haszeldine, and D. R. Taylor J. Chem. Sot. C, (1968) 2594.**
- 11 **M. Lustig and J. K. Ruff, Inorg. Chem., 3_, (1964) 287.**
- **'2 A. V. Fokin, Y. N. Studnev, L. D. Kuznetsova, and I. N. Krotovich, Izv. Akad. Nauk SSSR, Ser. Khim.,** (1976) 559.
- **'3** R. D. Chambers and R. H. Mobbs, Adv. Fluorine Chem., 4, (1965) 81.
- **'4** J. W. Lown and A. V. Joshua, Can. J. Chem., 55, (1977) 122 and 131.